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Figure 1: Closeup view of an isosurface feature in the mixing interface of two gases showing the texture mapped surface,
underlying triangle mesh, and the adaptively refined tetrahedral mesh around the region of interest. Time step = 273, Isovalue =
206, Isosurface error = 1.5, 50K Triangles, rendered at 7 frames per second.

ABSTRACT

We present an algorithm for interactively extracting and rendering
isosurfaces of large volume datasets in a view-dependent fashion.
A recursive tetrahedral mesh refinement scheme, based on longest
edge bisection, is used to hierarchically decompose the data into a
multiresolution structure. This data structure allows fast extraction
of arbitrary isosurfaces to within user specified view-dependent er-
ror bounds. A data layout scheme based on hierarchical space fill-
ing curves provides access to the data in a cache coherent manner
that follows the data access pattern indicated by the mesh refine-
ment.
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1 INTRODUCTION

The advent of high-performance computing has completely trans-
formed the nature of most scientific and engineering disciplines
making the study of complex problems from experimental and the-
oretical disciplines computationally feasible. Traditionally, with
smaller and simpler data sets, researchers have developedin-core
visualization and data exploration methods that work well on small
or medium-scale datasets. They can quickly generate isosurfaces,
and treat each isosurface independently. However today’s impact

∗{gregorski1,duchaine,pl,pascucci}@llnl.gov,†kijoy@ucdavis.edu

problems of science and engineering require a different approach
to address the increasingly difficult problems of organization, stor-
age, transmission, visualization, exploration, and analysis associ-
ated with massive datasets.

We present a new algorithm for interactively extracting and ren-
dering isosurfaces of large data sets in a view-dependent man-
ner. Our algorithm generates isosurfaces “on-the-fly” using a view-
dependent error measure, a recursive tetrahedral mesh refinement
scheme, and a unique data layout scheme suitable for out-of-core
visualization of large datasets.

Surface based level-of-detail techniques such as [5] and [21] ex-
tract a coarse isosurface and iteratively build a multiresolution sur-
face model. For large volume datasets that contain topologically
complex isosurfaces with millions and millions of triangles, these
techniques need to be combined with out-of-core simplification
techniques such as those developed by Lindstrom [11] and Lind-
strom and Silva [13] in order to operate. In some cases, the storage
requirements needed to extract, simplify, and visualize these sur-
faces can actually exceed those of the volume data from which they
are derived [2]. Interactively visualizing these types of isosurfaces
requires algorithms such as those developed by Duchaineau et al.
[1, 2], that combine multiresolution representations, compression,
and view-dependent optimizations. Surface based techniques are
not suitable for visualizing volumes that contain a large number of
isosurfaces that are important to the user because they must extract
all of the interesting surfaces which would take far too much storage
to be practical. On the other hand, volume based techniques, which
extract and render the isosurfaces directly, do not require the pre-
computation of selected isosurfaces, and can easily switch between
isovalues.

In this paper, we utilize the refinement of a tetrahedral mesh via
longest-edge bisection to build a multiresolution hierarchy of a vol-
ume dataset. We combine coarse-to-fine and fine-to-coarse refine-
ment schemes for this mesh to create an adaptively refinable tetra-
hedral mesh. This adaptive mesh supports a dual priority queue
split/merge algorithm similar to the ROAM system [3] for view-
dependent terrain visualization. It has fast coarsening and refine-



ment operations which allow for localized, incremental mesh up-
dates, strict frame-to-frame triangle counts, progressive improve-
ments of mesh quality, and guaranteed frame rates. The refinement
scheme is coupled with a data storage scheme which aligns the data
on disk and in main memory with the access pattern dictated by
the mesh refinement. Sets of tetrahedra that share a common re-
finement edge are grouped into an aggregate structure called a dia-
mond. Diamonds, as opposed to tetrahedra, function as the unit of
operation in the mesh hierarchy and simplify the process of refining
and coarsening the mesh.

At runtime, the split/merge refinement algorithm is used to cre-
ate a lower resolution dataset that approximates the original dataset
to within a given error tolerance. The error tolerance is a measure
of how much an isosurface, extracted from the lower resolution
dataset, deviates from the finest level isosurface. The error toler-
ance is measured in pixels on the view screen. The lower resolution
dataset is a set of tetrahedra, possibly from different levels of the
hierarchy, that approximates the volume dataset to within this iso-
surface error tolerance. This set of tetrahedra is free from cracks
and T-intersections, and it defines a piecewise linear approximation
of the original data. The isosurface is extracted from the tetrahedra
in this lower resolution representation using linear interpolation.

In a preprocessing phase, we compute general information for
each diamond that is used to drive the runtime mesh refinement.
The following information is computed for the diamonds (Section
3.1):

1. The isosurface approximation error of the region enclosed by
the diamond. (Section 5)

2. The min and max data values within the diamond including
the diamond’s boundary. The precomputed min/max ranges
are used to quickly cull regions of the dataset that do not con-
tain the isosurface.

3. The gradient vector at the center point of the diamond. The
center point is also called thesplit vertexof the diamond.
(Section 3.1) The precomputed gradient vectors are used to
shade the isosurface using texture mapping.

The remainder of our paper is structured as follows: Section 2
reviews related work. Section 3 reviews longest edge bisection and
introducesparentandchild relationships for refining and coarsen-
ing the mesh. Section 4 describes the split/merge algorithm for re-
fining and coarsening. Error metrics are described in Section 5. In
Sections 6 and 7, we describe the data structures used to implement
the split/merge refinement, and give an efficient, compact method
to encode the mesh’s structure. In Section 8, we discuss our data
layout scheme. Our results are shown in Section 9.

2 PREVIOUS WORK

The refinement of a tetrahedral mesh via longest edge bisection is
described in detail in several papers. In Zhou et al. [23], a fine-to-
coarse merging of groups of tetrahedra is used to construct a multi-
level representation of a dataset. Their representation approximates
the original dataset to within a specified tolerance and preserves the
topology of the finest level mesh. For larger datasets, this fine-to-
coarse strategy is not practical because storing the finest level mesh
would require too much memory.

An improved algorithm for preserving the topology of an ex-
tracted isosurface is presented by Gerstner and Pajarola [8]. This
algorithm is combined with a coarse-to-fine splitting of tetrahedra
to extract topology preserving isosurfaces or to perform controlled
topology simplification. Rendering of multiple transparent isosur-
faces and parallel extraction of isosurfaces are presented by Gerst-
ner [6] and by Gerstner and Rumpf [7]. Both of these algorithms

extract the isosurfaces from the mesh in a coarse-to-fine manner. In
Roxborough and Nielson [20], the coarse-to-fine refinement algo-
rithm is used to model 3-dimensional ultrasound data. The adaptiv-
ity of the mesh refinement is used to create a model of the volume
that conforms to the complexity of the underlying data.

View-dependent extraction of isosurfaces utilizes multiresolu-
tion representations to extract surfaces that satisfy certain visual
requirements. These requirements are usually based on the distance
of the surface from the viewpoint, the position of the surface relative
to the view-frustum, and the occlusion of the surface. Duchaineau
et al. [3] control refinement using the screen space projection error,
view-frustum culling, and line of site corrections. Occlusion culling
supplements view-frustum culling by finding areas within the visi-
ble region that cannot be seen. In Livnat and Hansen [15], a hierar-
chical visibility test is used to determine regions of the volume that
are occluded. The volume is decomposed using an octree, and the
visibility test is performed using hierarchical tiles based on cover-
age masks (see Greene [9]). A shear warp transformation is used
to perform the screen space projection. Their visibility algorithm
requires that the octree be traversed from front to back. Zhang et al.
[22] divide a large dataset into a set of independent blocks. They
use ray casting from the viewpoint into the volume to determine a
subset of these blocks that are occluders. These initial occluding
blocks are rendered to create an occlusion mask that shows which
screen pixels are covered. The remaining blocks are traversed and
rendered if they are not completely occluded. Unlike [15], this last
rendering step does not traverse the blocks in a front-to-back order.
This ray tracing approach is also used in [14] to find an initial set of
voxels from which to propagate the isosurface. The algorithm starts
extracting the isosurface from these seed sets, and detects when the
surface folds back on itself and becomes occluded. In our algo-
rithm, we use the screen space projection error of the isosurface and
view-frustum culling to control the view-dependent refinement.

In this work, we are focused on developing algorithms for level-
of-detail based, interactive exploration of large, complex isosur-
faces. Surface based methods such as [2, 21] construct level-
of-detail surface models that are suitable for interactive view-
dependent rendering. Volume based techniques such as [15, 22]
speed up the search for cells that contain the isosurface and cells
that do not need to be rendered, but they extract the isosurface from
the finest level cells. Our algorithm differs from these approaches
by utilizing a level-of-detail volumetric model which extracts the
isosurface from coarser representations of the volume that meet
certain requirements. Isosurface extraction techniques based upon
level-of-detail allow the isosurface to be progressively refined over
time, see for example [4, 18]. Visualizing large, complex isosur-
faces often requires the ability to fly through the dataset and closely
inspect areas of interest. Level-of-detail methods that support strict
triangle counts per frame for efficient rendering, progressive im-
provement of mesh quality to provide guaranteed frame rates, and
coherent access to data to minimize memory faults are well suited
to this task.

3 LONGEST EDGE BISECTION

In this section we review longest edge bisection and establish ter-
minology. In this scheme, a tetrahedron is described by aleveland
aphase, with 3 phases at each level. The bisection begins at level 0,
phase 0 with an initial configuration of a cube divided into 6 tetra-
hedra around a major diagonal. Figure 2 illustrates the three phases
of the refinement process. After three refinements, the level is in-
cremented by 1. Aftern refinements, the phase isn mod 3 and the
level isbn/3c. Thesplit edgeof a tetrahedron is its longest edge.
In each phase, a tetrahedron is subdivided into twochildrenat the
midpoint of the split edge. This midpoint is called thesplit vertex.
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Figure 3: Parent diamonds: Phase 0 parents are phase 2 diamonds from the levelL− 1, phase 1 parents are located at cube centers, and phase
2 parents are located at face centers. The split edge is(SV0, SV1) (shown in green), the split vertex isSV (blue), and the parents are shown
asP0, P1, P2, andP3 (red). The magenta tetrahedron is a tetrahedron in diamondP0. The shaded triangle shows how it is split into two
phase 0 tetrahedra.
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Figure 4: Child diamonds: Phase 0 children are located on the faces of a cube, phase 1 children are located on the centers of the edges of the
face containing the split edge, and phase 2 children are the phase 0 diamonds from levelL+ 1 that touch the diamond’s split edge.

Figure 2: Three phases of refinement for a single tetrahedron of the
initial configuration.

3.1 Diamonds

Tetrahedra are grouped into diamonds to simplify the refinement
process and to ensure continuity of isosurfaces generated from the
mesh. When a tetrahedron is split, all the tetrahedra that share its
split edge must also be split. A group of tetrahedra that share a
split edge is called adiamond. The split edge and split vertex of a
diamond are defined as the common split edge and split vertex of
its tetrahedra. All diamonds in the mesh can be uniquely identified
by their split edge or split vertex. Phase 0, phase 1, and phase 2
diamonds are shown in Figures 3 and 4. Each point in the dataset,

Phase Tets(Phase,Level) Parents(P,L) Children(P,L)
0 6(0,L) 3(2,L-1) 6(1,L)
1 4(1,L) 2(0,L) 4(2,L)
2 8(2,L) 4(1,L) 8(0,L+1)

Table 1: Number, phase, and level of tetrahedra, parents, and chil-
dren for the three different diamonds. L is thelevelof the diamond.

except for the corner points of the original cube, corresponds to the
split vertex of one diamond because each point is introduced by the
splitting of a diamond. By grouping tetrahedra into diamonds, we
can easily locate all of the tetrahedra around a split edge. Splitting
a diamond is equivalent to splitting all of the tetrahedra in the di-
amond. All tetrahedra within a diamond have the same level and
phase. Table 1 lists the number of tetrahedra, their phase, and level
for each diamond.

The type of a diamond is determined by its split edge (SV0,
SV1), whereSV0 andSV1 are the vertices on the split edge. Start-
ing from the initial configuration of six tetrahedra in a cube, there
are 26 different direction vectors (i.e. diamond types) for the split
edge; there are 8 directions for the phase 0 diamonds, 12 for the
phase 1 diamonds (4 each on the XY, XZ, and YZ planes), and 6
for the phase 2 diamonds. The type of a diamond is used to effi-
ciently encode the structure of the mesh (Section 6) including the



location of parent and child diamonds (Section 3.2).

3.2 Parent And Child Diamonds
Given a diamondD, the parents ofD are the diamonds that must be
split to createD’s tetrahedra. Figure 3 shows the parents for each
diamond. The diamonds that are created whenD is split are called
D’s children. Figure 4 shows the children for each diamond. In
these figures, a diamond is indicated by its split vertex. The parent
and child information is summarized in Table 1.

4 SPLIT/MERGE REFINEMENT

The tetrahedral mesh supports the dual queue split/merge re-
finement strategy similar to that described by Duchaineau et al.
[3]. This strategy provides more frame-to-frame coherence than
a coarse-to-fine only algorithm. It allows us to control the triangle
count per frame, and to effectively cache previously computed ge-
ometry to minimize expensive interpolation calculations. In most
interactive applications, the viewing position does not change sig-
nificantly between consecutive frames. In framei + 1, many dia-
monds from framei will have a view-dependent error that is still
within the error tolerance. These diamonds can be reused in frame
i + 1. A small fraction of the diamonds must be split or merged
to satisfy the error tolerance. By starting the refinement process for
framei + 1 with the mesh from framei instead of the base mesh,
fewer splits and merges are performed.

The current meshis a set of tetrahedra that approximates the
volume dataset to within a certain view-dependent error bound. The
mesh is generated using two priority queues. The split queue holds
the diamonds containing the tetrahedra of the current mesh. The
merge queue holds the diamonds that have been split and whose
children have not been split (i.e. diamonds with children but no
grandchildren).

At frame 0, the split queue is initialized with the base configu-
ration of six tetrahedra (the root diamond), and the merge queue is
empty. At each frame, given a view-dependent error toleranceE,
the following steps are taken:

1. Diamonds not within the view frustum are marked asinvisible
and diamonds that do not contain the isosurface are marked
asempty; they are assigned a view-dependent error of zero.
View-dependent errors are recomputed for all other diamonds
in the split and merge queues.

2. Diamonds in the split queue whose error is greater thanE are
split. Diamonds in the merge queue whose error is less thanE
are merged.Invisibleandemptydiamonds in the split queue
are never split. In the merge queue, they are the first diamonds
to be merged.

3. The refinement process is stopped when all diamonds in the
split queue have an error belowE and all diamonds in the
merge queue have an error aboveE, or when the time allowed
for processing the current frame has elapsed.

4. The isosurface is extracted from the tetrahedra that belong to
the visible, non-empty diamonds in the split queue.

A diamondD is split by splitting all of its tetrahedra, and insert-
ing the child tetrahedra into the split queue. A tetrahedron is placed
into the split queue by creating an entry for its diamond and adding
the tetrahedron to the diamond. There is only one entry for a dia-
mond in the split queue. When some of the tetrahedra in a diamond
do not exist (i.e. they are not in the current mesh), it is necessary
to create them before the diamond can be split. This situation is
shown in 2D in Figure 5. The tetrahedra are created by splitting

the parents ofD that have not been split. When all the parents and
tetrahedra ofD have been split,D is removed from the split queue
and added to the merge queue.

D0

D1

Figure 5: DiamondD0 has two triangles in the mesh. DiamondD1

has two triangles, one of which in the mesh. The triangle not in the
mesh is shown with the dashed lines. This is a 2D analogy of the
3D tetrahedral mesh.

Merging a diamond is done by merging all of its tetrahedra, and
adding them to the split queue. A tetrahedron is merged by remov-
ing its two children from the split queue. A tetrahedron is removed
from the split queue by locating its diamond’s entry in the split
queue and removing it from the diamond. When a tetrahedron is
removed from the mesh, its diamond is checked to see if all the
tetrahedra of the diamond have been removed from the queue. If
so, the diamond is removed from the split queue. Lastly, the dia-
mond’s parents are checked to see if they can be added to the merge
queue. A diamond can be added to the merge queue only if all of
its children are in the split queue.

4.1 Modifying The Isovalue
When the isovalue is changed by the user, the new isosurface can
be extracted by starting at the root diamond or starting from the cur-
rent mesh. In the first case, the split and merge queues, hash tables,
and isosurface are invalidated and initialized with the root diamond.
The split/merge refinement is then started from this initial configu-
ration. In the second case, the split queue, merge queue, and hash
tables remain the same, and the old isosurface is thrown away. The
diamonds in the split and merge queues are checked to determine
if they contain the new isovalue. Diamonds that do not contain the
isovalue are marked as empty and given an approximation error of
zero. Isosurface errors are computed for those diamonds that con-
tain the new isovalue. The split/merge refinement continues from
this new configuration. Diamonds that contain the new isosurface
will be refined if their error is too large and coarsened if their error
is too small. Diamonds that contained the old isosurface, but do
not contain the new isosurface, will be merged because they are no
longer needed to represent the volume. The effectiveness of both
of these methods depends on the locality of the old and new isosur-
faces in the mesh hierarchy. Starting from the current configuration
makes sense if they are close together, and starting from the top
makes sense if they are far apart.

5 ERROR METRICS

Each diamond in the mesh has an associated approximation error,
isosurface error, and view-dependent error. The approximation er-
ror ea for a tetrahedronT is the maximum difference between the
linear approximation overT that interpolates the values atT ′s ver-
tices and the actual data values for the points insideT and on its



boundary (i.e. faces, edges, and vertices). The approximation error
for a diamondD is the maximum of the approximation errors of its
tetrahedra. Leaf tetrahedra and leaf diamonds have an approxima-
tion error of zero.
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Figure 6: Isosurface error calculation in 1D.

The isosurface error of a tetrahedronT is the maximum deviation
of an isosurface generated using the scalar values at the vertices of
T from the true isosurface passing throughT . This calculation is
illustrated in Figure 6 for the one-dimensional case. The original
function isf(x) and it is approximated byL(x). The upper and
lower bounds on the approximation, given by the approximation
error ea, area1(x) anda2(x). For a given function valuey, the
isocontour usingL(x) occurs at pointa wherey = L(a), while the
true isocontour usingf(x) occurs at the pointb wherey = f(b).
The error in the isocontour is given by:

eiso = |a− b| (1)

An upper boundu for the isosurface error can be computed by:

u = ea/k ≥ eiso, (2)

wherek is slope of the linear approximationL. As f approaches
a vertical line the slope ofL increases, andf is approximated with
increasing accuracy byL. As the slope off decreases, the isocon-
tour approximationa and the true isocontourb can be far apart even
if ea is small. In higher dimensions, the slope of the approximation
translates to the magnitude of the gradient. In three-dimensions,
this is the gradient of the field through a tetrahedron as given by
the linear function that interpolates the values at the tetrahedron’s
vertices. The isosurface error is clamped at the physical size of the
tetrahedron because the isosurface drawn through a tetrahedron can
never be outside the tetrahedron’s boundaries. The isosurface error
for a tetrahedronT is given by:

eiso(T ) = min(ea/‖∇f(T )‖, diam(T )), (3)

The isosurface erroreiso(D) for a diamond is:

eiso(D) = max(eiso(T ),∀T ∈ D). (4)

The view-dependent error of a diamond is the projection of its iso-
surface error onto the view screen. This projection is done by creat-
ing a sphere at the diamond’s split vertex of radiuseiso(D) and pro-
jecting this sphere onto the view screen. The size of the projected
sphere (i.e. width or height in pixels) is the view-dependent error.
Details on view-dependent error metrics can be found in Hoppe
[10], Lindstrom and Pascucci [12], and Luebke and Erikson [16].
All of these error metrics are easily incorporated into our refinement
strategy.

6 MESH ENCODING

The mesh structure can be encoded in a very compact manner as-
suming that the data points lie on a(2n+ 1)× (2n+ 1)× (2n+ 1)
grid. In this case, the offsets, relative to the split vertex of the di-
amond, to compute the tetrahedron vertices, parents, and children
of a diamond are all powers of two. Data that do not lie on such a
grid can either be resampled to lie on a grid of the proper size or
embedded in avirtual grid of the proper size.

Since each data point corresponds to a diamond, we represent a
diamond using an(i, j, k) index. This index corresponds to the in-
dex used to access the precomputed diamond information and data
values if they were stored in a C-style 3-dimensional array. The ver-
tices defining the split edge of a diamond are encoded in a single
byte as an offset vector from the split vertex. For example, the split
edge withSV0 = (64, 64, 0) andSV1 = (64, 0, 64) has the vec-
tor (0,−64, 64) and split vertex(64, 32, 32). Dividing this vector
by 64 yields(0,−1, 1). These values are stored as 2 bit quantities
in a single byte.SV0 andSV1 are computed by rescaling the vec-
tor and adding/subtracting it from the split vertex. In this example,
(0,−1, 1) is rescaled to(0,−32, 32). The rescaling factor is easily
determined from the level of the diamond. For a mesh withl levels,
the scaling factor for a diamond at levelj is given by2l−j−1. The
split edge encodings are stored in a lookup table and accessed at
runtime based upon the type of the diamond. Since a diamond is
identified by its split vertex, the vertices on the split edge can be
computed by knowing the diamond’s type and level. The parents,
tetrahedra, and children of a diamond are encoded and stored in the
same manner as the split edge. For any diamond, the(i, j, k) index
for a parent, child or vertex of a tetrahedron can be computed from
the diamond’s split vertex and the proper encoding. There is one
set of encodings for each of the 26 types of diamonds.

Encoding the mesh in this manner allows us to quickly compute
the (i, j, k) index of a diamond’s parents and children. Instead of
storing pointers to the parents and children of a diamond, we store
all of the diamonds in a hash table and use the(i, j, k) index of the
split vertex to locate a diamond. In the case of a phase 2 diamond,
this saves twelve pointers (4 parents, 8 children) or 48 bytes per
diamond. Since each(i, j, k) index corresponds to a data point, we
can quickly compute indices for the vertices of a tetrahedron and
use them to get the data values needed to extract the isosurface.

7 DATA STRUCTURES

We precompute the isosurface approximation error, min and max
scalar field values, and gradient vector at the split vertex for each
diamond in the hierarchy. Gradients can be computed at runtime
and stored in a hash table; however, our data layout algorithm (Sec-
tion 8) makes computing gradients via central differences expensive
and so the gradients are precomputed. Assuming byte scalar field
data, floating point errors and floating point gradient components,
18 additional bytes are required per input value. A10243 (1 Gb)
dataset would be inflated to an enormous 19 Gb dataset.

In order to reduce the size of the precomputed data, the isosur-
face errors are compressed on a logarithmic scale on a per-level ba-
sis and represented in six bits. The gradient vectors are quantized
on a unit cube using fourteen bits. In addition, we use an iterative
relaxation process to smooth the gradient vectors which are com-
puted directly from the byte datasets we use. The min and max
values for a diamondD are compressed in relation to a diamondS
that completely containsD. A diamondS contains a diamondD if
the polyhedron forD is completely enclosed by the polyhedron for
S. The tetrahedra created by recursively refiningD’s tetrahedra are
all contained withinS’s polyhedron. Either of the two diamonds
whose split vertices are the vertices ofD′s split edge can be used
for S. This is illustrated in Figure 7.
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Figure 7: The min/max values of a diamond are encoded relative
to the min and max values of an enclosing diamond using 4 bits (2
each for min/max) to encode 0/8, 1/8, 1/4, or 1/2 of the enclosing
interval. (The offset 3/8 is not encoded.) In this example min = 1/8,
max = 1/4.

Using these data structures, the precomputed information for
each diamond is stored in three bytes. A 1 Gb dataset is inflated
to 4 Gb instead of 19 Gb. Error values and gradients are found at
runtime using lookup tables. Since the errors are encoded in 6 bits,
the table for the error values contains26 × n floating point values
wheren is the number of levels in the mesh. For a5123 dataset,n
equals 9. The gradient table contains3× 214 floating point values.

The split and merge queues are implemented as hash tables using
a fixed number of buckets and chaining to handle collisions. Each
bucket corresponds to a range of the projected screen space error as
measured in pixels. Each entry in the bucket corresponds to a dia-
mond whose screen space error falls within the bucket’s range. The
buckets are not sorted internally by error value. Hash tables can be
used instead of priority queues because it is not necessary to split
the diamond in the split queue with the highest error, or to merge
the diamond in the merge queue with the lowest error. Instead it
is sufficient to split a diamond whose error is greater than the cur-
rent tolerance and to merge a diamond whose error is less than the
current tolerance. Hash tables withO(1) operations provide bet-
ter performance than a priority queue withO(logn) operations. A
separate hash table, the queue hash table, is used to map diamond
indices to their entries in the queue. There is one hash table for the
split queue and one hash table for the merge queue. This second
hash table is necessary because the split and merge queues are or-
dered by view-dependent error. In order to quickly locate a specific
diamond in either queue, we need to be able to access the queue
based upon the(i, j, k) index of the diamond. Accessing the dia-
monds in the queues based on view-dependent error would require
computing the view-dependent error, locating the bucket that the
diamond is in, and then traversing the bucket to get the appropriate
entry.

Queue

Precomputed
Diamond Info

Hash Table 
   Entry

Diamond Index (i,j,k)

Figure 8: Relationship between precomputed data, queue entries,
and queue hash table.

The data structures are illustrated in Figure 8. The hash table
maps a diamond index to an entry in the queue. The diamond in-
dex associated with the queue entry maps back to the precomputed
diamond information and the same hash table entry. When a tetra-
hedron is added or removed from the mesh, its diamond’s index is
used to locate the corresponding entry in the split queue via the split
queue’s hash table. Each diamond in the split queue contains flags
indicating which of its tetrahedra are actually in the current mesh.
The reason for these flags is shown in Figure 5. Each bucket entry
in the split and merge queues stores the diamond’s level,(i, j, k) in-
dex, isosurface and view-dependent errors, andinvisibleandempty
bits.

When a tetrahedron is added to the split queue, the isosurface
passing through it is computed and stored in thegeometry cache.
The geometry is cached in an array so that it is in a contiguous
region of memory. New geometry is appended to the end of the
array. Geometry is removed from the cache by replacing the re-
moved geometry with geometry at the end of the array. A hash
table is used to map a diamond to the geometry cache entries asso-
ciated with its tetrahedra. This caching method duplicates normals
and vertices along edges. Its advantage is that it has better mem-
ory coherence than hash table based caches which store the vertices
and normals on a per-edge basis (see Gerstner and Rumpf [7]). On
newer graphics hardware, storing the geometry in a contiguous re-
gion of memory allows one to stream the data from memory to the
graphics card for improved rendering performance. The mesh is
drawn by traversing the geometry cache.
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Figure 9: New data points required at each refinement level in 2D.
The arrows indicate the wrapping of data values assuming periodic
boundary conditions.

8 MEMORY LAYOUT

When visualizing very large datasets, memory performance is a key
bottleneck that must be overcome to achieve interactivity. In order
to improve cache performance and effectively utilize the available
memory bandwidth, we arrange our data on disk and in memory in
a hierarchical z-order layout which follows the data ordering indi-
cated by the mesh refinement.

Figure 9 shows how the mesh refinement algorithm accesses the
data. Starting with the root configuration in the upper left, the dots
indicate which data points are introduced at each refinement step.
The numbers indicate the order in which the points are stored in a
one-dimensional array. The dataset is stored first by level-of-detail
(i.e. quadtree or octree level) and then by geometric proximity
within each level. This layout scheme assumes that the dataset ex-



Processors Memory Usage (Mb)
R10K (250 Mhz) Physical Total

Preprocess 8 800 800
Runtime 1 150 690

Table 2: Memory and processor usage for the preprocessing and
runtime phases for a5123 dataset. Runtime measurements are taken
for an isosurface with 70K triangles and an error of 1.5.

Time(s) Operation # Elements Elem/Sec
0.07 Cull/Priority 49K - 77K 700K - 1.1M
0.06 Drawing 63K 1.05M
0.01 Split/Merge 10-40 1000 - 4000

Table 3: Timings results for algorithm sections.

hibits periodic boundary conditions which is a valid assumption for
the datasets that we are working with (i.e. for a1293 dataset indices
0 and 128 map to the same location). This data layout scheme and
its performance benefits are detailed in [12] and [19]. Storing the
data in this manner improves the coherence of the data access which
is essential when working with large datasets. The original dataset
and the information computed in the preprocessing phase of our al-
gorithm are stored on disk in this manner. The data is mapped from
disk to main memory at runtime using the Unixmmap command.
The mmap command establishes a mapping between a process’s
address space and a virtual memory object represented as a disk
file. It provides us with a basic out-of-core paging algorithm. This
allows us to keep in memory the data that is currently being used
by the split/merge process and the isosurface extraction process.

9 RESULTS

We have tested our methods on an SGI Onyx with 44 250 MHZ
R10K processors and IR2 graphics boards. At runtime the algo-
rithm uses one processor and one graphics pipe. The preprocessing
was done in parallel on the same machine. Memory and processor
usage for the preprocessing and runtime phases is shown in Table
2. Resident memory refers to the actual physical memory used. It
includes memory used by the data structures and by the regions of
the dataset that have been paged in from disk. Total memory refers
to the address space currently assigned to the program. Preprocess-
ing a5123 dataset takes 3.1 hours, and the final dataset size is 537
Mb.

Our test dataset is the Gordon Bell Prize winning simulation of
a Richtmyer-Meshkov instability in a shock tube experiment [17].
The full resolution dataset consists of 274 time steps with each time
step divided into a grid of8×8×15 bricks where each brick consists
of 256×256×128 byte data values for a total time step resolution of
2048×2048×1920 byte data values. A full resolution isosurface of
the mixing interface produces a mesh with 460 million triangles. In
our examples, we are looking at isosurfaces of entropy values cal-
culated as two fluids mix over time. Our examples are from5123

chunks cropped from the full resolution dataset. Figure 10 shows
how the isosurface refines around the viewpoint and coarsens away
from the viewpoint. Figure 1 shows a closeup view of a feature in
the mixing interface at time step 273. The ability to zoom in on re-
gions of the dataset and refine the isosurface allows one to closely
inspect the features of the mixing process. These images show how
the mesh adaptively refines around the viewpoint. Figure 11 shows
an isosurface similar to the one shown in Figure 1 at different screen
space errors. The isosurface representing the mixing interface con-
tains a large number of topological components and small features.
In the two lower resolution surfaces, the small feature in the top left
is not preserved.

Table 3 shows the performance measurements for the visibil-
ity culling and priority recomputation, split/merge refinement, and
rendering sections of our algorithm. The time for culling and pri-
ority recomputation depends on the number of computations and
the memory performance of the hash table. We can perform about
700K - 1.1M computations a second. Rendering at 7 FPS (0.14s per
frame) and allowing at most half of the frame time for culling and
priority recomputation, we are allowed 49K - 77K computations
per frame. Limiting the triangle count in the extracted isosurface to
around 50K triangles gives us roughly 65K - 85K diamonds in the
queues. We recompute the visibility information for all diamonds
in the split and merge queues, and we recompute the priorities for
all visible, non-empty diamonds in the queues. This is an expensive
operation and can be improved using hierarchical, deferred priority
recomputation. The split/merge performance is determined by the
number of recursive splits and the coherency of the data access.
Merges only have to look at children and parents and performO(1)
lookups to find them. Splits look at children and parents and may
have to look atO(n) diamonds wheren is the number of levels in
the tree. To test the split/merge performance, we fixed the time for
doing splits and merges to 0.01s. The algorithm performs around
1000 - 4000 updates per second or 10 - 40 updates per frame. The
time for drawing depends on the number of elements drawn. In im-
mediate mode, the SGI graphics system can draw 50K triangles at
a rate of 1.05M triangles per second which is about 20 frames per
second. At 7 FPS with 0.06s for drawing, this gives us at most 63K
triangles per frame. These restrictions on the triangle count, queue
sizes, and mesh updates per frame, allow us to render 5 - 7 frames
per second or about 250K - 350K triangles per second.

Figure 10: Closeup view of a mixing feature. Time Step = 273,
Isovalue = 186, Isosurface error = 0.5. On the right, a zoomed out
view shows the portion of the isosurface culled by the view frustum.

10 CONCLUSIONS

We have presented an algorithm for quickly extracting and render-
ing isosurfaces from large volume datasets. Our algorithm uses
a multi-resolution tetrahedral mesh based on edge bisection, ex-
tending it to support adaptive refinement and coarsening. We have
shown an efficient way to encode the tetrahedra, parents, and chil-
dren of the mesh structure so that the mesh can be represented com-
pactly and computed using efficient integer operations. The imple-
mentation of the dual queue split/merge algorithm utilizes this new
encoding of the mesh through the addition of a queue hash table
which enables the queues to be accessed by view-dependent error
and diamond indices. Our algorithm is very extensible and easily
integrates with other optimizations such as deferred priority recom-
putation, front-to-back traversal for transparent rendering and oc-
clusion culling, topology preservation and simplification, and par-
allelization.

The size and complexity of datasets such as the Richtmyer-
Meshkov simulation present great visualization challenges. Our
future work is focused on extending our algorithms to be able to
handle the full size datasets from these simulations in interactive



Figure 11: Isosurface with varying screen space error at Time Step = 273, Isovalue = 213. From left to right: Error = 0.56, 95K Triangles;
Error = 1.7, 30K Triangles; Error = 2.7, 13K Triangles.

applications. Runtime processing of these massive datasets requires
parallelization of both the refinement process and the rendering pro-
cess. This can either be done on large shared memory machines or
large clusters of commodity workstations. Both techniques require
efficient data paging schemes to move data between processors and
machines. The visualization of time varying data presents an even
bigger challenge for these large datasets. Extending our algorithms
to time varying data requires time varying encoding and compres-
sion of the data as well as fast decoding and decompression to up-
date the mesh as quickly as possible.
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